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Notation

3 a,b,c axis lengths of moon

dM differential element of mass

I d position vector of the satellite with respect to
Mars

I D position vector of the moon with respect to Mars

G universal gravitational constant

H Hamiltonian

IxxI yy, Izz moon mass moments of inertia

IxyIxzIyz  moon mass products of inertia

I L Lagrangian

i m,M mass

Pi generalized momenta

Qi generalized coordinates

r position vector of the satellite with respect
I to the differential element of moon mass

R position vector of the satelliLe with respect
I to the moon

T kinetic energy

I v velocity

V potential energy

I x moon's minimum axis of inertia

3 y moon's intermediate axis of inertia

z moon's maximum axis of inertia

I
I
I
I



I

* Greek Notation

position vector of differential element of moon
mass with respect to the center of gravity

w angular velocity - revolution rate of moon

angular velocity - rotation rate of moon

I

I

I
II
II
II

ix

I
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Abstract

I Orbits about the Martian moons, Phobos and Deimos, were

3 investigated using the Poincare' surface of section tech-

nique. Hamilton's canonical equations were derived to

3 describe the dynamics of the modified restricted three-body

problem (Mars, moon, artificial satellite). The surface of

section technique involved the numerical integration of

3 several test orbits with the same value for the Hamiltonian.

Apoapsis and periapsis points of the orbits are plotted in

3 the two-dimensional configuration space. Stable orbits were

discovered when the points formed sets of closed curves;

chaotic orbits were indicated by the scattering of the

3 points.

Ix

I
U

I
I
I
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I. Introduction

Phobos and Deimos, the Martian moons, are just two of

the many natural satellites in the solar system which may be

modeled as triaxial ellipsoids. They are in nearly circular

orbits about Mars and rotate about their major axes of

inertia. The objective of this study is to determine wheth-

3 er or not stable orbits can be found about either one of

these moons.

Htr.ilton's canonical equations will be derived to

describe the dynamics of the modified restricted three-body

problem (Mars, moon, artificial satellite). These equations

will then be numerically integrated using the Haming algo-

rithm to produce test orbits.

I In the surface of section method, numerous test orbits

are integrated with the same value of the system Hamiltoni-

an. When a spacecraft passes through the closest or fur-

thest approach to the moon (periapsis and apoapsis, respec-

tively), a point is piotted in the orbital plane. If a set

I of closed curves is formed by the points, the orbit is

stable; otherwise, the orbit is unstable.

Plots of the periapsis and apoapsis points for various

3 Hamiltonian values will be presented. Where appropriate,

stable orbits will be identified from these plots.I
I
I
I



II. Problem Dynamics

The coordinate system used in this investigation is

illustrated in Figure 1. Phobos and Deimos may be modeled

as triaxial ellipsoids as shown in the figure. Each moon

rotates synchronously. That is, the rotation rate (2) of

the moon about its own axis (z) is equal to the revolution

rate (w) of the moon about Mars. Therefore, the moon's

minimum axis of inertia, x, remains pointed toward Mars

while it rotates about its maximum axis of inertia, z. The

intermediate axis of inertia, y, completes the "right-hand-

ed" set of orthogonal axes.

Mars and the artificial satellite are modeled as sym-

metric spheres with their masses concentrated at their

centers. The center of mass of Mars is assumed to be fixed

in inertial space. The only forces assumed to be acting on

the three-body system are the gravitational ones between the

bodies; all others are neglected. Additionally, the satel-

lite is assumed to be sufficiently small so as not to affect

the motion of the other bodies.

The moon's orbit about Mars is taken to be circular.

This assumption is acceptable since the eccentricities of

Phobos and Deimos are .015 and .00052, respectively (3:422).

The position of the moon with respect to Mars is denote6 by

D. The position of the satellite with respect to the mocn

is denoied by R and with respect to Mars by d. Various

geometric and kinematic parameters used in this study for

2
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I
Mars, Phobos, and Deimos are given in Appendix A.

I Equations of Motion

The equations of motion of the satellite will be

derived in the form of Hamilton's canonical equations. The

I Hamiltonian is defined as

H = EPiQ i - L (1)

where Qi and Pi are the generalized coordinates and general-

ized momenta, respectively. L is termed the Lagrangian and

I is given by

L = T - V (2)

where T and V are the kinetic energy and potential energy,

respectively. The first step then, in determining the

i equations of motion is to find T and V in terms of the

generalized coordinates (Q is) and generalized velocities

(Qi s .

3 Kinetic Energy. The kinetic energy of the satellite is

given byi
Tsat =-mV2  (3)

2

where m is the mass of the satellite and v is the inertial

velocity of the satellite. In this study, the inertial

reference frame is taken to be at the center of mass of

I Mars.

4I



I

I Therefore,I2
v= d d (4)

Throughout this investigation, a dot () over a vector will

indicate the time rate of change of the vector with respect

I to the inertial frame (an inertial derivative). As seen in

Figure 1, d may be written as

d= D + R (5)

Therefore

d = D + R (6)

D may be expressed as

S id  rd
D = - D = - D + wri x D (7)

Sdt dt

where the superscripts i and r indicate derivatives taken in

the inertial and rotating (moon-fixed) frames, respectively.

Because D remains constant in the rotating frame,

rd
- D =0 (8)
dt

and Eq (7) simplifies to

D = wri x D (9)

but

w r i = Q (10)

5



Therefore

D = (91z) x (DAx) = QDA y (11)

I Now R is defined to be

IR = X + y~ + ZAZ (12)

*R may then be expressed as

dR dt- R r x R (13)

I = + yaY+ zaz (14)

+ (s ~z) x (Xx + YA Y + ZAZ)

* Therefore

R =(x- QY')AX + (Y + QX)i Y + Ziz (15)

Combining Eqs (6), (11), and (15) results in

d (x - Q) + (Y + 9X + QD)A + ZAZ (16)

Combining Eqs (3), (4), and (16) yields

Tsa - (X -Y) +(Y + QX + QD) 2 + z(7
st 2

Potential Enel~gy. The potential energy of the satel-

lite may be divided into two parts, one due to Mars and one

due to the moon.

Vsat = Vmars + Vmoon (18)

6



I7
i

Potential Energy Due to Mars. The potential

energy of the satellite due to the gravitational attraction

of Mars is easily derived. In this study, Mars is assumed

to possess spherical symmetry. Therefore, the center of

i mass of Mars is assumed to coincide with its center of

gravity. The potential energy of the satellite due to the

gravitational attraction of Mars may, therefore, be written

in the simple Newtonian form as

Vmars GM marm (19)
di

where d is

d = Id[ = ID + RI = [(X + D) 2  + y2 + Z2]1/2 (20)

i Potential Energy Due to Moon. The potential

i energy of the satellite due to the gravitational attraction

of the moon is more difficult to determine since the moon is

not spherically symmetric. Its shape is assumed to be a

triaxial ellipsoid as shown in Figure 2. The gravitational

potential for an arbitrarily shaped body is given in Meiro-

vitch (9:430-436).

The potential energy in an inverse square force field

* may be written as

Vmoon Gm r (21)

II
7

I
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The scalar r is the distance between the satellite

center of gravity and a mass differential element of the

moon, dMmoon It may be written as

r = I 1 IR - 01 (22)

Its inverse may be written as

r- l = IR - 1l = [(R - 0)2] - l/2 (23)

= (R 2 
- 2R*. + 02) -1/2 (24)

[R2 (l - 2- + L) )] -/2 (25)
R 2  R 2I 2

= R-l[l - (2-- + -- )1 - 1 /2 (26)
R 2  R 2

Using a binomial expansion, it can then be written in the

form of a power series as

I ~ p 1 2  3 2R*1 1

r-l = R- 1{1 + RO - 1(0)2 + - [2 O ()2]2 + . (27)

R2 2 R 8 R

R- 3 (R-0) -IR 33 2 + - 5 (R3)2 (28)
2 2

3 R-5(R'p)0 2 + 3R-5134 +8 "'I2 8

From Figure 2, the following vectors are defined

R = Xi x + Y y + Z zi (29)

S = aa x + biy + Ci z  (30)

9



Therefore

R2 = X2 + y2 + Z2  (31)

2 = a2 + b 2 + c2  (32)

R*O = aX + bY + cZ (33)

Combining Eqs (21), (28), and (31)-(33) results in

Vmoon = - GmR- IdMmoon - G m R - 3 1 ( a x + bY + cZ)dMmoon (34)

+ 1-GmR3 (a2 + b2 + c2 )dMmoon2 1

33 
-GmR-5J(aX + bY + cZ) 2 dMmoon

The higher order terms resulting from the binomial expansion

have been dropped since their effect is negligible.

Eq (34) may now be broken down into smaller parts.

I - GmR- IdMmoon - GmR-IMmoon (35)

3 Because the origin is taken to be at the center of mass,

3 GmR-3J(aX + bY + cZ)dMmoon = 0 (36)

3 Combining the third and fourth terms of Eq (34) results in

SGmR-3J[3R-2(aX + bY + cZ) 2 - (a2 + b2 + c2)]dMmoon (37)
2

3 GmR-3J[3R-2(a2X2 + b2 y2 + c2 Z2 ) (38)

10



3+ 6(abXY + acXZ + bcYZ) - (a2 + b2+ c2 )IdMmo

2 f moon

+ (3R-2 Y2 
- 1)]1 b2 dMmoon + (3R-2 Z2 

- 1)J1c 2 dMmoon

+ 6(XYI abdMmoon + xzI acdMmoon + YXj bcdMmoon)i

But

I a2 dMmoon - -4Ua2 + b2 ) + (a2 + c2 ) - (b2 + C2 )dMmoon (40)

3 2(1 zz +1Iy - I) (41)

3 [b2Mmoon [[(a2 + b2 ) + (b2 +c 2 ) - (a2 + c2)]dMmo (42)

U jm on 4(a2 +Cd C2) +( 2 + c2) - (a,2 + 2)]dMmoon (44)

I(I~3  + 1 (45)

IIabdMmoon =Ix (46)

3 acdMmoon =Ixz (47)

II bcdMmoon =y (48)



Ixx I Iy, and Iz are the mass moments of inertia. Ix3 I z, and Iy are the mass products of inertia. Using prin-

cipal axes, the mass products of inertia for the triaxial

* ellipsoid are

3x = Txz =I yz = 0(49)

3The mass moments of inertia are calculated using the follow-

ing equations (8:542)

U xx =1Mmoon(b2 + c2)5

I -M mo(a 2 + c2 )

1zz = 1M moon (a2 + b2 )

3 where a, b, and c are the axis lengths of the moon.

The potential energy due to the moon may now be written

Vmoon -GmMmoonR-
1  (50)

1 -GmR-3 [(3R-2 X 2 
- 1)(I + I - I

4 yy z X

+ (3R_2 Y2 - l)(I xx + I zz - I YY)

+ (3R-2 Z2 - M)i xx + I yy - z]

Vmoon - GmMmoonR-1 + I GmR-3(Ix + I yy+ I ZZ) (51)

- 3-GmR 5[X2(I + I - Ixx
4 yy z X

+ Y2 (j xx + I zz - I yy ) + Z2 (I xx + I yy - I zz)

12



I Lagrangian. The next step in determining the equations

of motion is to find the Lagrangian. Combining Eqs (2),

(17), (19), (20) and (51) the Lagrangian becomes

2 mI(x' -Y) (Y + QX + QD) 2 + *21 (2

+ GMmar 5 md'1

+ GMmoomR -1 -GmRC
3 (I x + I yy+ I Z)

+ 3 GmR-5 [X 2 (I + I -I )
4 yy ZZ XX

+ Y2 (I xx + I ZZ- I n,) + Z2 ( Ixx + I y- z

Dividing out the mass of the satellite, m, the Lagrangian

may be written on a per unit mass basis as

I L ~~~~1[( - 2y)2 +(y+2 + D +z]53

3+ GMmar 5 d'

+GmoonR- 4R3 xx +Iyy +IZZ)

4-3GR-5 (X 2 (I y + I -z Ir

+Y2 ( xx + I Z - I ,) + ,,Ix +Iyy, z)

3Generalized Momenta. Next, the generalized momenta,

P.arp derived

IX 6k - QY(54)

Py= -. Y + QX + QD (55)
6Y

13



6L

PZ - Z z (56)

Generalized Velocities. Before the Hamiltonian can be

defined, the generalized velocities, Q 's, must first be

eliminated from the Lagrangian. Rearranging Eqs (54)-(56)

results in

X = PX + QY (57)

Y = Py - QX - QD (58)

Z = PZ (59)

Substituting Eqs (54)-(56) into the Lagrangian (Eq (53))

provides

L 1 (Px 2 + Py 2 + pz 2 )  (60)

I + GMmarsd-i

+GMmooR 1 - -G3(

moonGR( xx Iyy + Izz)

+ 3GR- 5 [X2 (I + I - I4 yy zz IXX

+ y2(Ixx + I zz - Iyy) + Z 2 (Ixx + lyy -

Hamiltonian. With the Lagrangian in the correct form,

the Hamiltonian may be written as follows

H = EPiQ i - L = Px(Px + QY) + Py(Py - QX - QD) + PZ 2  (61)

I (}P 2 + Py2 + 2
2 PY 2 Z1

14



I

- GMmarsd-l

- GMmoonR-I + I-GR ( xx+ + I ZZ)
4 y z

I 3 _GR5 [X 2 (I + I - I
4 yy zz xx

I+ y2(Ixx + I zz - Ilyy ) + Z12(Ixx + Ilyy -Izz) ]

H 1 (Px 2 + p 2 + pz 2 ) + pXy - PyQ(X + D) (62)
2X

- GMmarsd-I

- GMmoonR-I + 1 GR 3 (Ixx +yy + Iz)
4

- 3GR- 5 [X 2 (I + I - I

+ Y 2 (Ixx + Izz - Iyy) + Z2 (Ixx + yy - Izz) ]

Hamilton's Equations. The equations of motion may now

I be written in canonical form. It is advantageous to use

3 this form because the resulting first order differential

equations can be numerically integrated more readily. In

addition, since the Hamiltonian contains only the general-

ized coordinates and momenta, and not their time deriva-

I tives, first integrals of motion are easier to determine.

Qi 6p (63)

X3= - = H + QY (64)

6Px

6HU P- Q(X +D) (65)6Py

15I



6H66
6 PZ

Pi 6 (67)
6Q*

= 6H = -3, R 3 XX
PP - GMms + D) - GM moonR3 (68)

+ 3ZGR -5X(31~ + 31 - I

- GR-7 x~x2 U + I - I)

6H + Y2 i x + I z - I + z2 ( I xx + I -y Iz )

* - - o = - QPX- GMmarsd 3 Y -GMmoonR-
3 Y (70)

6Y

+ 3GR 5Y(3IXX + 31z IZ YY

15 -GR 7 Y[X 2 (I + I - I,~
4 yy z x

+~ 1( ~ - I, ) + z2 (I~+ -

2Ixx 7Z Yy xx yy

PZ - a =-G mars d -GM moonR (70)

+ 3 GR 5 Z(3IXX + 31Iyy - IZZ

15 -GR 7 Z[X 2 (I y + I z -I )
4 y

+ 2jxx +Izz -Iyy ) 21xx +Iyy z)

These equations of motion are also listed in Appendix B for

convenience.

16



X-Axis Symmetry

The equations of motion may be transformed using the

following relationships

x --- > X

y --- > -y

t --- > -t

When this transformation is made, the equations of motion do

not change in the rotating coordinate system. Therefore,

for every orbit, there is a second orbit which is a reflec-

tion of the first orbit about the XZ plane. The second

orbit, however, is traversed in the opposite direction from

the first due to -t. This symmetry becomes very useful in

the surface of section technique and effectively doubles the

number of data points obtained for a given trajectory.

17
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I III. Surface of Section Technique

Poincar6's surface of section method is used to discov-

er stable orbits around the Martian moons. In this

technique, the dynamics of the three-body problem are re-

stricted to the planar case and the one known integral of

motion is determined. A surface of section is then intro-

3 duced into the problem in order to determine if further

integrals of motion exist. If a second integral of motion

exists, stable orbits may be discovered.

I Restricted Three-Body Problem

* In what is commonly referred to as the Restricted

Three-body Problem, only the gravitational forces between

3 the bodies are considered. Perturbations due to other

forces such as the gravitational attraction of other bodies,

atmospheric drag, a non-spherical body, etc. are assumed to

be very small and are ignored. The equations previously

derived describe the motion of a satellite in a Modified

Restricted Three-body Problem. Gravity terms due to the

non-spherical moon are also included.

I The artificial satellite in the restricted three-body

* problem is constrained to motion in the plane formed by the

moon revolving around the planet. Because of this planar

restriction, Eqs (66) and (70) can be ignored and Z can be

set equal to 0 in the remaining equations (Eqs (64), (65),

(68), and (69)). These equations of motion describe a

I
18I



system with two degrees of freedom and four dimensions in

the phase space.

Integrals of Motion

When four initial conditions are defined, a solution of

the system may be represented in the four-dimensional phase

space. If an integral of motion exists, solutions of the

system may be represented in a three-dimensional subspace

for particular values of the constant integral of motion

(13:127).

In this problem, the Lagrangian (Eq 60) does not depend

explicitly on time. Therefore

6L--L 0(71)

6t

An integral of motion, known as Jacobi's integral may then

be determined from the following (9:83)

6LE r Qi - L = constant (72)
6Qi

In this case, the Jacobi integral turns out to be equal to

the system Hamiltonian (Eq 62). This was to be expected

since the Hamiltonian does not depend explicitly on time.

In this problem, the artificial satellite is con-

strained to move on a three-dimensional manifold within the

four-dimensional phase space because of the existence of the

Jacobi Integral (7:6). The Hamiltonian provides a one-

dimensional parametrization of the manifolds on which the

19
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I satellite motion takes place.

If another independent integral of motion exists, the

satellite is further constrained to move on a two-

dimensional manifold embedded in the three-dimensional one

defined by the Hamiltonian (7:6). The surface of section

Itechnique is used to determine the existence of such inde-

3 pendent integrals of motion.

Surface

I In the surface of section method, a surface is intro-

3duced into the phase space according to some given relation-

ship. If a second integral of motion exists, the intersec-

* tion of the two-dimensional manifold on which the satellite

is constrained to move and the introduced surface will

generally be one-dimensional (7:6). If a second integral of

3 motion does not exist, the intersection of the surface and

the satellite orbit will not be one-dimensional. Instead,

3the intersection will be scattered over a larger subset of

the surface.

In this study, the surface of section is defined by the

3following condition

R*V = 0 (73)

or for the planar case under consideration

XX + YY = 0 (74)

This condition occurs at the satellite orbit's apoapsis and

I
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I
periapsis points. These are the points where the satellite

is farthest from and nearest to the moon. Points along the

orbit of the satellite where this condition occurs are

plotted in the two-dimensional configuration space.

* Other criteria for the surface of section are possible;

however, R*V = 0 is used because it indicates, by inspec-

3 tion, whether or not an orbit will collide with the moon.

If any of the surface of section points lie beneath its

surface, the trajectory will obviously collide with the

* moon.

* Stability of Orbits

If the surface of section points plotted in the config-

uration space form closed contours, a stable orbit is

present for that particular value of the Hamiltonian. A

I periodic orbit will pass through the centers of the closed

* curves.

If the surface of section points form closed curves

3 that intersect one another, unstable orbits may be located

which pass through the intersection points. The intersec-

I tion of the curves is often referred to as a saddle point

3 (an unstable equilibrium point).

I
I
I
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IV. Solution Method

Satellite trajectories are determined through numerical

integration with a FORTRAN computer program. The computer

program allows for significant interaction between the

operator and computer.

The initial X and Y coordinates for the trajectory and

the Hamiltonian value are the primary inputs along with the

integration step size and the total integration time. A

data file with the X and Y coordinates for all of the sur-

face of section points is the main output.

The output data files for several trajectories, each

having the same Hamiltonian value, are then plotted with a

two-dimensional graphics package. From these plots, the

discovery of orbits, both stable and unstable, may be made.

Initial Conditions

Prior to the integration of the equations of motion,

initial conditions for the states X, Y, PX, and Py must be

determined. The initial values of X, Y, and the Hamiltoni-

an, H, are chosen. In addition, the starting point of all

trajectories is chosen so the surface of section condition

of Eqs (73) and (74) is met. Given these conditions, the

initial values for Px and Py may be calculated by first

obtaining a quadratic expression for Y.

To obtain a quadratic expression for Y, the following

equations are utilized

I



6L

Px =  = x - QY (54)

6L

PY- - Y + QX + 2D (55)

H I (PX 2 + Py 2 + pZ 2 ) + p -Xy PyQ(X + D) (62)
2X

- Gmarsd
1l

- GM moonR- + -GR 3 (i + I + I )GI°n 4 xX yy zz

- -3GR- 5 [X 2 (Iyy + zz- Ixx

II + Y2 (I ,x + I zz - I yy) + z2 (I xx + I yy - z)

XX + YY = 0 (74)

Substituting Eqs (54) and (55) into Eq (62), and combining

all of the potential energy terms into one quantity (V),

3 results in the following expression for the Hamiltonian

l(2
H -'2 + Y.2 - 22 X2 - 22 2  2D) (75)

-29YX - Q DX + V

Solving Eq (74) for X provides

| Y.
X -- Y (76)

Substituting Eq (76) into Eq (75) yields the following

quadratic expression for

I

I 2
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(X2 + y + 4Qy2 )y2 + (49Xy 2 )y (77)

+ (2X2)[-l(Q2X2 + 2y2+ 2 D2 ) - Q2 DX + V - H]Y = 0
2

Solving the above expression for Y results, of course,

in two different values. Either value may be chosen. In

many instances, choosing one value will result in a prograde

3 trajectory, while choosing the other value will result in a

retrograde trajectory.

X may be calculated from Eq (76). The required initial

3 values for the generalized momenta, PX and Py, may then be

determined from Eqs (54) and (55).

Traiectory Integration

Haming's Ordinary Differential Equations Integrator

'is used to integrate the equations of motion (Eqs (64),

I (65), (68), and (69)). It is a fourth order predictor-

corrector algorithm. It extrapolates the last four values

of the state vector to obtain a predicted next value (the

3 prediction step) (16:120). It then evaluates the equations

of motion at the predicted value and corrects the extrapo-

I lated point using a higher order polynomial (the correction

3 step) (16:120). The Haming method is numerically very

stable and provides high accuracy.

I Surface of Section Points

3 After each integration step, the value of R*V is calcu-

lated. The current value is compared to the last value and

I
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if the sign of the value has changed, the surface of section

condition (Eq 73) has been met.

In order to obtain very precise values for the surface

of section points, the last four values of the integration

time, the X and Y coordinates, and the R*V calculation are

maintained. When a check of the R*V value indicates the

orbit has passed through a surface of section point, the

Newton interpolation polynomial (1:112) is used with the

last four integration states to obtain a very precise deter-

mination of the coordinates of the surface of section point.

R*V is a function of X and Y, however. Therefore, inverse

interpolation is used to determine the X and Y coordinates

for which R-V = 0 (1:119).

As discussed earlier, there is trajectory symmetry

about the X-axis. Therefore, in addition to the surface of

section point determined from the trajectory being inte-

grated (X,Y), the reflection of that point about the X-axis

(X,-Y) is also obtained.

Orbit Checks

Several checks are made during the integration of the

trajectories. The location of the satellite relative to the

moon is continuously checked.

If the satellite travels too far away from the moon an

escape trajectory is assumed. In many cases, the satellite

escapes into a Martian orbit. If, on the other hand, the

25



satellite passes too closely to the center of the moon, the

singularity at that point causes the integration to "blow

up." Whenever either one of these conditions occurs, inte-

* gration of the trajectory is halted.

Even though trajectories which pass through (or very

I close to) the center of the moon become numerically unsta-

* ble, other trajectories continue right through collisions

with the moon without difficulty. These trajectories are

allowed to continue, since they may provide useful results

in the surface of section technique. In any event, a check

I of the trajectory will determine that a "collision" has

occurred in these cases and make that fact known.

Dynamics Verif'o..ion and Computer Program Checks

In order to verify that the equations of motion were

correctly derived and that the computer program was perform-

ing -s intended, various checks were made.

Two-Body Problem. One verification check involved

reducing the dynamics of the problem to a simple two-body

problem. In this case, the gravitational attraction of Mars

(GMmars), the system rotation (2), the moon's moments of

inertia (Ixx, Tyy, and I..), and the distance to the origin

I of the coordinate system (D) were all set to 0. The satel-

lite was then given circular speed relative to the moon for

its initial altitude. The orbit integrated was indeed

circular and did return to the original starting point.

When the moments of inertia were included, the orbit became

I
26I



I
slightly elliptical and contracted as expected.

In another case, the gravitational attraction of the

moon (GMmoon) and the initial velocity of the satellite were

i set to 0. The starting point of the trajectory was chosen

very near to the moon. The satellite remained relatively

stationary in the rotating coordinate system, indicating it

was indeed in the expected circular orbit of mars.

Conservation of the Hamiltonian. Another check in-

volves the Hamiltonian. As discussed previously, the Hamil-

tonian is a constant integral of motion. It should remain

invariant over the entire trajectory. H, therefore, is

periodically checked throughout the trajectory integration

to insure it is conserved to several decimal places.

I
I
I
I
I
I
I
I
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V. Results and Discussion

Stable orbits were discovered about each of the Martian

moons. The discussion of results will be presented sepa-

rately for Phobos and Deimos. However, the nature of the

orbits about each of the moons is quite similar, as might be

expected.

Phobos

Figure 3 is a typical surface of section plot for

Phobos. Each of the test trajectories was initiated along

I the negative X-axis (between the moon and Mars). Several

stable trajectories (3-9) were integrated for each chosen

Hamiltonian value. They were evenly spaced out over the

3 "region of stability". In this region, all of the test

trajectories remain in orbit around Phobos for the entire

I integration time. They demonstrate, at the very least,

3 practical stability. The trajectories initiated beyond this

region were unstable. Their surface of section points were

scattered in the configuration space.

In Figure 3, eight stable test trajectories were inte-

grated for the Hamiltonian value, H = -6.8528. Separate

I curves for each of them are readily identifiable in the

figure.

Trajectories which were initiated outside the stable

region, closer to the moon, proceeded to the moon's center.

As expected, unstable trajectories closer to the moon

I
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reached the center in far fewer orbits than those further

away from the moon. Trajectories that were initiated out-

side the stable region, further from the moon, escaped the

moon's influence. They normally entered a Mars orbit simi-

lar to the orbit of the moon itself. These characteristics

were similar to those of previous thesis efforts.

All of the trajectories were integrated for 5,000,000

seconds (57.9 days). This integration time provided thou-

sands of surface of section points: enough so the size and

shape of the curves formed were easily recognizable. The

integration step size normally used was 200 seconds. Under

these conditions, the run time on a main frame computer was

several minutes. In a few instances, a smaller step size

(50-100 seconds) was required to prevent numerical integra-

tion problems; usually for trajectories close to the center

of the moon. Even with the large step size, the location of

the surface of section points was accurately calculated with

the inverse interpolation method discussed earlier.

Ty pcal Orbits. For the typical orbit, four points

meeting the surface of section criteria (R*V 0 0) were

determined each time a trajectory encircled the moon. For

the retrograde trajectories represented, the points appeared

successively in a counter-clockwise manner. The four re-

gions where the points were determined are easily identifia-

ble in Figure 3. The curves formed for each trajectory are

closed and thus indicate stable orbits. However, most of
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the orbits rotate or precess about the moon and are not

simple, closed periodic orbits. The four surface of section

points rotate regularly within their "own region" for each

* successive encirclement of the moon.

The centers of the closed curves represent the surface

U of section points for a stable, closed periodic orbit.

* Figure 4 shows the simple periodic orbit associated with the

surface of section of Figure 3. In order to demonstrate

3 that the surface of section points for the closed periodic

orbit do in fact coincide with the centers of the closed

I curves, the orbit has been superimposed with the surface of

3 section plot. The orbit's eccentricity is .221 and its

period is 13,900 seconds (3.86 hours). A satellite placed

3 in this orbit would encircle the moon approximately twice

during the orbital period of Phobos about Mars.

I The surface of section technique was used to discover

many stable orbits about Phobos. The orbit altitudes vary

from just above the moon's surface to several hundred kilom-

eters away. The surface of section plot associated with

each of the orbits is contained in Appendix C. They are

each identified with their particular Hamiltonian value, H.

* Table I provides a summary of the characteristics of

each of the stable, closed periodic orbits. The period of

the first orbit listed is approximately half that of Pho-

bos's orbit about Mars. The period of all of the other

orbits is approximately equal to Phobos's orbit period

3
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Table I. Characteristics of the Stable Orbits About Phobos

I.c.'s R R- a b e P

3 -6.8528 -22,0 17 26 22 21 .221 13,900

-6.8527 -68,0 61 126 93 87 .352 26,600

1 -6.8526 -93,0 86 178 132 123 .350 27,200

-6.8525 -112,0 105 217 161 151 .346 27,400

-6.8524 -129,0 121 251 186 174 .348 27,400

-6.8523 -143,0 136 279 208 195 .344 27,500

-6.8522 -156,0 150 307 228 214 .344 27,500

1 -6.8521 -169,0 161 331 246 231 .346 27,400

-6.8520 -179,0 173 356 265 249 .345 27,600

-6.85 -332,0 325 657 491 462 .338 27,600

-6.84 -708,0 695 1410 1052 990 .340 27,500

I
I

H - Hamiltonian, km 2i'sec 2

I.C.'s - initial conditions, km
Rp P- pericenter distance, km

R a  - apocenter distance, km
a - semi-major axis, km
b - semi-minor axis, km
e - eccentricity

I P - period. see

I

I
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(Phobos rotates beneath each orbit in the rotating coordi-

nate system). The eccentricities of the orbits are all

about .34 - .35 with the exception of the first orbit which

is slightly less eccentric (.221). The table also indicates

the altitudes of the orbits increase at a lower and lower

U rate as the value of H increases.

The initial velocities of the orbits range from 11.4

m/s for the lowest orbit (H = -6.8528) to 327 m/s for the

highest orbit (H = -6.84).

Variation of the Semi-Kaior Axis. Figures 3 and 4

I demonstrate an interesting and unexpected phenomenon. For

each orbit in a normal Keplerian ellipse, only two points

will meet the surface of section criteria (R-V 0 0) used in

this investigation. These two points. apoapsis and periap-

sis, are found at the ends of the major axis. For the

I closed orbit of Figures 3 and 4, however, four points meet-

ing the surface of section criteria were discovered. This

orbit does not represent a simple rotating Keplerian ellipse

* as expected.

The semi-major axis is not constant as the satellite

orbits the moon. Instead, it varies with a period equal to

half that of the satellite's orbital period. It can be seen

from Figure 4 that a second, longer apoapsis distance is

achieved during the first quarter of the orbit period.

However, after half of the orbit period. the major axis has

shifted back to its original position and the expected

3
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periapsis point is achieved.

During the second half of the orbit, the major axis

shifts again. The resulting apoapsis is symmetric about the

X-axis with respect to the larger apoapsis which occurred

during the first half of the orbit period. By the time the

satellite has completed one orbit, the major axis has shift-

ed back to its original position again. This perturbation

occurs in all of the orbits discovered around Phobos.

This phenomenon was discovered by Tycho Brahe in the

orbit of the Earth's moon (11:289). Brahe found that the

semi-major axis of the Moon's orbit executed small oscilla-

tions. This perturbation, termed "the variation," has a

period of half a synodic month. It results from the fact

that there is less pull on the Moon in the radial direction

of the Earth at new and full moon (the force potential is a

maxima) than at the quarters (the force potential is a

minima) (2:287). The curvature of the Moons's orbit, there-

fore, is least at new and full moon and greatest at the

quarters, so that the orbit is elongated, with its longer

axis perpendicular to the direction of the Sun (2:287).

The results obtained in this study demonstrate the same

i perturbation phenomenon. In this case. Mars is the third

body that causes the effect. As in the case of the Moon's

3 orbit, the satellite's major axis in this studv is elongated

in a direction perpendicular to the third body.

I Collision Orbits. As di!;cussed earlier, the surface of
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3 section criteria provides a clear indication of orbit tra-

jectories that will impact the moon. Figure 5 clearly

indicates all of the trajectories integrated are collision

3 orbits. All of the periapsis points, and in some cases even

the apoapsis points, lie below the surface of the moon. The

I stable, closed periodic orbit indicated does in fact lie

partially below the moon's surface as seen in Figure 6.

Orbit Resonance. Nonlinear systems often exhibit

* resonances at any rational multiple of the forcing frequency

(16:140). In the case at hand, resonances occur when the

I period of the satellite is a rational multiple of the moon's

3 orbit period. Resonant orbits usually produce several

"islands" associated with a stable periodic orbit. These

3 "chains of islands" were first described by Htnon and Heiles

(5:76).

* Figures 7 and 8 provide an excellent indication of

orbit resonance. Figure 7 shows the entire surface of

section plot for H = -6.8527. Figure 8 is a magnification

3 of the same surface of section plot for the region closest

to Mars.

I As expected, a stable, closed periodic orbit is located

3 by the center of the four concentric closed curves of Figure

8. Figures 9 and 10 show the simple closed orbit superim-

3 posed on the surface of section plot.

Seven separate closed curves or "loops" are also clear-

ly evident in Figure 8 in the region between the outermost

I
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closed curve and the inner closed curves. These seven loops

are the chain of islands associated with a single periodic

orbit. Seven islands exist in each of the four portions of

the surface of section plot. The orbit traject.-- associat-

ed with this resonance travels through a different one of

the seven islands for each encirclement of rh moon. After

seven encirclements, the trajectory comes back to the origi-

nal island and this periodic behavior continues. Figures 11

and 12 show the periodic orbit superimposed on the surface

of sectio 1 plot. The period of this resonant orbit is

approximately seven times greater than the period of the

simple, closed periodic orbit. It is also seven times

greater than the orbit period of Phobos.

* Several other resonant orbits are indicated by the

surface of section plots. Figures 28 and 32 also indicate

I the presence of stable periodic orbits with a resonance

implied by seven islands. Figures 34, 38, 42, 44, and 46

indicate even greater resonances. Figures 34-36 represent

an especially interesting case of higher order resonance.

Orbit Evolution. As the Hamiltonian is increased,

I orbits are found further and further from the moon. Trajec-

tories "on the edge" of the stable regions in the surface of

section plots become more and more elliptical and their

periapsis points move closer and closer toward the moon.

The orbits become less and less stable with ros;pect to

I Phobos and are essentially orbits of Mars instead, which are
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perturbated by Phobos.

It is also interesting to note that closed periodic

orbits are much more difficult to find further from the

moon. The closed curves associated with these orbits become

very narrow and elongated. The initial conditions for these

orbits must, therefore, be determined very precisely, making

them much less navigable.

The characteristics associated with the evolution of

* the surface of section plots can be observed in Figures 13

and 14. The upper and lower branches of the surface of

3 section plot in Figure 13 clearly demonstrate that the

trajectories are almort in orbit about Mars. The surface of

section points on these branches are formed as the moon

rotates beneath the very elliptical trajectories. Figure 14

implies that the initial conditions for the stable, closed

I periodic orbit indicated must be determined very accurately;

otherwise, a satellite could be many kilometers from its

starting point after completing only one orbit of the moon.

3 Orbit Direction. The surface of section plots provide

no indication of the direction of the orbits. This informa-

I tion must be determined from other a priori knowledge. All

3 of the stable orbits discovered in this inves;tigation were

retrograde (counter-clockwise).

3 Several attempts were made to discover prograde (clock-

wise) orbits. However, the test trajlectories quickly e, -

I caped the influence of the moon or quickly collided with the

I
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I
moon. Few, if any, useful surface of section points could

be determined.

Jefferies discovered in his work that stable retrograde

orbits appear for much smaller values of the Hamiltonian

than stable prograde orbits (7:16). The Martian moons may

be too small to support any prograde orbits. The value of H

for which stable prograde orbits might otherwise appear, may

be greater than that required for escape trajectories.

Deimos

In the same manner as the Phobos analysis, several

evenly-spaced test trajectories were initiated along the X-

axis. All of the trajectories were integrated for

10,000,000 seconds (116 days). Because the orbit periods

were generally greater than those of the Phobos orbits, a

longer integration time was used. The longer integration

time was required so the sufficient number of surface of

section points needed to indicate the shape and size of any

closed curves could be obtained.

Table II provides a summary of the characteristics of

each of the stable, closed periodic orbits discovered about

Deimos. The orbit period of the first orbit listed is

approximately one-fourth of Dpimos's orbit. about Mars. As

expected, the orbit periods increase as the orbit altitude

is increased.

The eccentricities of the orbits are ipproximatolv .23

.35 with the exception of the closer orbits which are more
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Table I. Characteristics of the Stable Orbits About Deimos

H I. C.s ,R Ra a b e _

-2.738592 -10,0 10 11 11 11 .03.6 18,800

-2.738591 -13,0 13 15 14 14 .063 25,800

-2.738590 -18,0 16 20 18 18 .115 35,400

-2.738589 -23,0 23 33 28 27 .190 53,600

-2.738588 -31,0 31 49 40 50 .232 72,100

-2.738487 -41,0 38 68 53 50 .309 83,200

-2.738586 -48.0 44 84 64 61 .309 90,800

i -2.738585 -56,0 48 103 76 71 .358 93,000

3 -2.73858 -75,0 75 156 116 108 .352 106,000

-2.73857 -109,0 108 216 162 153 .332 108,000

-2.73856 -135,0 132 267 199 188 .340 108.000

3 -2.73855 -156.0 153 310 231 217 .339 108.000

-2.7385 -233,0 232 464 348 328 .334 109,000

-2.7384 -340,0 336 679 507 478 .338 109,000

3 -2.7383 -418,0 417 839 628 592 .335 109,000

H - Hamiltonian, km 2 /sec 2

I.C.'s - initial conditions, km

Rp - pericenter distance, km

Ra - apocenter distance, km
a - semi-major axis, km
b - semi-minor axis, km

e - eccentricity

P - period, sec

I
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circular in nature. Table II also indicates, once again.

that the altitudes of the orbits increase at a lower and

lower rate as the value of the Hamiltonian increases.

The initial velocities of the orbits range from 4.15

m/s for the lowest orbit (H = -2.738592) to 43.8 m/s for the

highest orbit (H = -2.7383).

All of the orbits discovered were retrograde. Attempts

to discover stable prograde orbits were unsuccessful as in

the Phobos case. With the exception of the low altitude

orbits, the evolution of the surface of section plots was

similar to that seen for Phobos.

Variations in the semi-major axis that are quite simi-

lar to those of the Phobos orbits were discovered. However,

no resonant orbits were discovered. This may result from

the fact that Deimos is further away from Mars than Phobos,

thpreby limiting the resonances associated with the third

body effects. At low altitudes, orbits representing simple,

rotating Keplerian ellipses were discovered. None were

discovered in the Phobos inalysis.

Rot_4itn Ellipses. The surface of section plots for

low altitude orbits about Deimos are quite different than

those of the other orbits. The nearly circular closed

.urvps encompassing the entire moon in the surface of sec-

tion plot of Figure 15 indicate the presence of rotating

orbits. Figure 16 is the isolat.ed surface of section formed

by only one trajectory. In this case. the orbit is a Keple-
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rian ellipse that rotates about the moon. The periapses and

apoapses occur at roughly the same altitude for each encir-

clement of the moon. Therefore, the curves traced out by

these points, as the orbit rotates about the moon, are

nearly circular. Figure 17 demonstrates this behavior. The

orbit superimposed on the surface of section of Figure 16

was integrated for 100,000 seconds.

Figure 15 also indicates the emerging presence of

islands associated with the semi-major axis perturbation

effect discussed earlier. The surface of section for this

case is isolated in Figure 18. The stable, closed periodic

orbit associated with this surface of section is displayed

in Figure 19. With the exception of the narrow region just

discussed, an infinite number of stable, rotating, periodic,

elliptical orbits may be discovered within the stable region

associated with the closed curves of the surface of section

plot.

The discovery of rotating ellipses around Deimos and

not around Phobos is most likely due to the fact that Deimos

is much further away from Mars. As long as the orbits are

very close to Deimos. the moon's gravitational field greatly

dominates the possible perturbation effects caused by the

very distant planet.

Co llision Orbits. Trajectories that collido with

Deimos are indicated by Figure 20. One such trajectory is

shown in Figure 21. All of the periapsis points of this
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rotating orbit are below the moon's surface.

Orbit Evolution. The evolution of orbits about Deimos

as the Hamiltonian and altitude increase is very interest-

ing. The orbits discovered just above the surface of Deimos

are all rotating ellipses (see Figure 20). However, as the

altitude of the orbits increase, variation in the semi-major

axis begins to appear (see Figure 15). The areas of the

surface of section plots indicating rotating ellipses de-

crease (see Figure 22) and then begin to disappear complete-

ly. In the surface of section of Figure 23, the surface of

section points for the unstable trajectory initiated just

beyond the stable region were included to indicate the

transition to non-rotating orbits with varying semi-major

axes. The scattered points from the unstable trajectory

indicate the presence of a disappearing rotating ellipse.

When H is further increased, only non-rotating orbits are

indicated from the surface of section (see Figure 24). The

islands first appear to be very isolated. Howe' ,.r, as the

Hamiltonian (and orbit altitude) is increased, these regions

become elongated and begin to approach one another (see

Figure 25). At this point, the surface of section plots

become quite similar to those created for Phobos.
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VI. Conclusions and Recommendations

The surface of section technique was successfully used

to determine several stable periodic orbits about both

I Phobos and Deimos. Most of the orbits displayed a variation

3 in the semi-major axis. Only the orbits very close to

Deimos were determined to be simple rotating ellipses.

* Closed periodic orbits are much more difficult to

discover further away from the moon. In addition, the

initial conditions associated with these orbits must be

determined much more precisely than those for the low-

altitude orbits. The gravitational attraction of Mars

3 dominates for the high-altitude orbits. Therefore, the use

of orbits in close proximity to the moons is recommended

over the distant orbits. Long term stability may be

achieved as long as the orbit velocity can be maintained to

within a few meters per second.

3 These orbits could prove useful as parking orbits for

any future manned or unmanned missions to Mars. Because of

the low gravity of Phobos and Deimos, the landing of a

3 vehicle on their surfaces from a low altitude orbit would

require little expenditure of fuel. The potential extrac-

3 tion of wate: from the moons makes them attractive targets

for exploration.

A possible extension of this resarch %ould involve the

3 expansion of the dynami,:s model ; include losser order

effects such as the nonisph,,rical chara(tori,;ti's of Mars
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U Appendix A: Problem Parameters

Moons: Phobos Deimos

Axis Lengths (km) (14:251)

I x = 13.4 x = 7.5
y = 11.2 y =  6.1

I z__9.2___5.

Density (R/cm 
b z (4:1)

3 =2.2 =.7

Moments of Inertia (kg'km 2 )

I xx 4 2 .016*moon Ixx 1 2 .8 5 0 !moon
Iyy 52.840o I = 16.658 "moony. .m.onoon

I m1oon* YY 18.692"Moo
Izz 61.000.Mmoon Izz moon

Orbital Radius (km) (3:423)

D 7 9,378 D = 23,459

Rotation Rate (rad/sec) (3:423)

I = 2.28 x 10 - 4  2 = 5.76 x 10 - 5

Gravitational Attraction (km 3 /sec) (3:423)

GMmoon =6.6 x10
- 4 =GMmoo 8.8 x 10 - 5I__

Mars:

Gravitational Attraction (km 3 /secj: GMmars 42828.32
(10:6-3)
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Appendix B: Eqiuations of Motion

IX = P + QY (64)

YI y - 9X+ D) (65)

Iz = PZ(66)

U Gma -3 (X + D) - GM R0 0  X (68)

+ +GR -5X(31 + 31 1

I15 GR 7x~x2 (Ij + Iz Ixx

I+ Y2 ( Ixx + I z - I y)+ Z2 x + I yy - zz

Py -QPX - GMmars d Y- GM moon R 3Y (69)

+ 3-GR 5 Y(3I + 31 - I )
4 xx z yy
15 7 2l

-- GIC Y[X 2(~ + Iz - Ixx

+ Y2 ( Ixx + I zz - I 1y) + Z2-( Ixx + I yy -I ZZ)]

-Z GMmars d 3 Z - GMmoonR-3 z (70)

3-5
+ -GR 5Z(31 + 31 - I )I4 x X yy z z

15 - 7 ~ 2 (l
4G ZZX + r

4x yy zzz X
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Abstract

Orbits about the Martian moons, Phobos and Deimos, were

investigated using the Poincare' surface of section tech-

nique. Hamilton's canonical equations were derived to

describe the dynamics of the modified restricted three-body

problem (Mars, moon, artificial satellite). The surface of

section technique involved the numerical integration of

several test orbits with the same value for the Hamiltonian.

Apoapsis and periapsis points of the orbits are plotted in

the two-dimensional configuration space. Stable orbits were

discovered when the points formed sets of closed curves;

chaotic orbits were indicated by the scattering of the

points.


